

FRAUNHOFER INSTITUTE FOR INTERFACIAL ENGINEERING AND BIOTECHNOLOGY IGB

BIOMATERIALS AND BIOLOGIZATION

MATERIAL DEVELOPMENT FOR LIFE SCIENCE PRODUCTS AND MEDICAL DEVICES

BIOLOGIZATION IN MEDICINE AND MEDICAL TECHNOLOGY

Medical devices go bio. Biopharmaceuticals are already firmly established in the medication of diseases, and now materials in medical technology are being revised and new biomaterials are being developed.

New, tissue-derived materials, bioinspired structures and biofunctional or biologized surfaces will ensure that medical devices, prostheses and implants are better tolerated. Using materials that imitate the biochemical and mechanical properties of natural tissues can minimize irritation in the organism and achieve longer product lifespans. Optimally biomimetics will be available in the future, which can be completely integrated into the body.

We offer professional support in your development through consulting, contract research and service analysis.

FIELDS OF APPLICATION

We offer R&D services for your innovations, developments, or analyses for e.g.

- Medical devices
- Implants
- Drug-release systems
- In vitro diagnostics
- Biosensors
- Tissue engineering
- Sterilization

SPECTRUM OF SERVICES

OUR EXPERTISE

Chemical synthesis and extraction of biomaterials

- Modification of biomolecules Modification with crosslinkable functions, spacers, anchor molecules
- Isolation from cells and tissues
 Isolation of collagen, recombinant production of extracellular matrix proteins, tissue specific ECM for click-immobilization
- Synthesis of polymers
 Polymers and copolymers with defined functional groups, hydrogels

Processing of biomaterials

- Particle production
 Nanoparticles, microparticles, encapsulation of drugs
- Membrane production
 Flat membranes, hollow fiber membranes
- Casting of films and hydrogels
 Biocompatible crosslinking procedures, thermal, photochemically
- Electrospinning
 Synthetic polymers and natural proteins
- Printing

2D- and 3D-printing of biomolecules, polymers, polymer composites, cell- and tissue specific ink development for bioprinting

Surface modification

- Functionalization
 Activation of surfaces and functionalization with reactive chemical groups by plasma processes
- Biofunctionalization
 Immobilization of biomolecules, colonization with cells
- Coatings
 Solvent based coatings, vacuum based coatings, functional layers on foils and 3D components, surface structuring
- Sterilization processes
 Plasma processes for polymer surfaces to clean, sterilize and remove pyrogens

Analytics

- Material analysis
 Polymer analytics, particle analytics, specific physicalchemical properties
- Surface analysis
 Topography, chemical composition, wetting, adsorption of molecules
- Analysis of cell-material-interactions
 Microbiologic, molecular biologic and cell biologic analyses
- Cell-based *in vitro* diagnostics
 Biocompatibility (accredited), skin testing device, *in vitro* detection of pyrogens

CONTACT

Fraunhofer IGB

Nobelstrasse 12 70569 Stuttgart Germany Fax +49 711 970-4200 *www.igb.fraunhofer.de*

Dr. Michaela Müller Phone +49 711 970-4140 michaela.mueller@igb.fraunhofer.de

Please visit also the website of the Fraunhofer technology platform: *www.biorap.de*

In cooperation with:

University of Stuttgart Institute of Interfacial Process Engineering and Plasma Technology

