Genexpressionsanalysen für jeden Organismus – auch ohne DNA-Sonden

Presseinformation /

Genexpressionsanalysen liefern Informationen darüber, welche Gene in einer Zelle aktiv sind, das heißt über Boten-RNA umge-schrieben (transkribiert) und in Proteine übersetzt (exprimiert) werden. Am Fraunhofer IGB wurde nun ein neues hoch-auflösendes und sensitives Verfahren entwickelt, das universell für jeden eukaryontischen Organismus eingesetzt werden kann und somit von großem Interesse für die Forschung im Pharma-, Agro- und Chemiebereich ist.

DNA-Fragmente werden im Gel in zwei Dimensionen aufgetrennt. Der Vergleich des Spotmusters gibt Aufschlüsse über Gene, die spezifisch exprimiert werden.

Wie unterscheiden sich die aktiven Gene eines gesunden von einem kranken Menschen? Welches Gen wird in einem krebsentarteten Gewebe anders exprimiert als in normalem Gewebe? Welche Gene entscheiden darüber, ob eine Nutzpflanze anfällig für Pilzkrankheiten ist? Antwort auf diese Fragen gibt die differenzielle Genexpressionsanalyse. Der das ganze Transkriptom einer Zelle umfassende molekularbiologische Vergleich von Tumorgewebe mit gesundem beispielsweise kann helfen, so genannte Tumormarker zu identifizieren, also solche Gene, die speziell nur in bestimmtem Krebsgewebe exprimiert werden. Sind diese Gene bekannt, können Tumoren klassifiziert und die Erfolgsaussichten verschiedener Therapieformen beurteilt, in Zukunft sogar spezifische oder individuelle Diagnostika und Therapeutika entwickelt werden.

Das Werkzeug der Wahl für genomweite Genexpressionsstudien ist der DNA-Mikroarray oder DNA-Chip. Dessen großer Nachteil ist jedoch, dass die Gene des zu untersuchenden Organismus vollständig sequenziert und lokalisiert sein müssen. Zudem ist die Herstellung von DNA-Sonden und Mikroarrays aufwändig und teuer. Damit die Möglichkeiten der Genexpressionsanalyse auch jenseits der sequenzierten Modellorganismen wie Mensch, Maus und Hefepilz genutzt werden können, haben Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, gemeinsam mit den Firmen GATC, Konstanz, und raytest, Straubenhardt, sowie dem Laboratorium für funktionelle Genomanalyse LAFUGA am Genzentrum München ein universelles Genexpressionsverfahren entwickelt.

Die Technologie beruht auf der gelelektrophoretischen Trennung komplexer cDNA-Proben. Zunächst wird hierfür Gesamt-RNA aus dem Untersuchungsmaterial zu einer doppelsträngigen cDNA umgeschrieben und vervielfacht (amplifiziert), um dann mittels einer zweidimensionalen DNA-Gelelektrophorese aufgetrennt zu werden. Die Auftrennung der DNA-Fragmente erfolgt dabei zunächst nach Molekulargewicht, dann nach GC-Basengehalt. Im Gel erhält man so ein komplexes Muster so genannter Spots, die durch Färbung mit Fluoreszenzfarbstoffen sichtbar werden. »Vergleicht man die Spotmuster zweier unterschiedlicher Proben desselben Organismus, lassen sich unterschiedlich stark exprimierte cDNAs und damit diejenigen Gene ermitteln, die differenziell transkribiert werden«, erklärt Dr. Kai Sohn, Projektleiter am Fraunhofer IGB. Der große Vorteil des neuen Verfahrens ist seine universelle Verwendbarkeit. »Wir können jeden beliebigen Organismus aus dem Pflanzen- oder Tierreich untersuchen. Dies schließt die Analyse von Kulturpflanzen, die gegenüber Krankheitserregern resistent sind, genauso ein, wie Studien an Haustieren oder bisher nicht-sequenzierten pathogenen Pilzen«, sagt Sohn. Dabei ist das Verfahren sehr sensitiv. »Für eine Analyse benötigen wir lediglich 1 Mikrogramm Gesamt-RNA – bei einem DNA-Array sind es üblicherweise 25 Mikrogramm. Weiterhin können wir mit unserem Verfahren noch unbekannte, kleine Transkripte identifizieren, die nur unvollständig von DNA-Mikroarrays abgedeckt werden«, hebt Sohn die weiteren Vorzüge der zum Patent angemeldeten Technologie hervor. Das Verfahren ist daher von besonderem Nutzen für Firmen und Forschungslabore aus Medizin, Biotechnik und Pflanzenzüchtung, die Zielmoleküle (Targets) in komplexen und bisher nur schwer analysierbaren Modellsystemen identifizieren wollen, um sie für die Entwicklung von Diagnostika oder zur Optimierung von Kulturpflanzen einzusetzen.